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Abstract
We compute the finite-size corrections to the free energy, internal energy and
specific heat of the critical two-dimensional spin-1/2 Ising model on triangular
and hexagonal lattices wrapped on a torus. We find the general form of the
finite-size corrections to these quantities, as well as explicit formulae for the
first coefficients of each expansion. We analyse the implications of these
findings for the renormalization-group description of the model.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Cn

1. Introduction

It is well known that phase transitions in statistical–mechanical systems can occur only in
the infinite-volume limit. In any finite system, all thermodynamic quantities (such as the
magnetic susceptibility and the specific heat) are analytic functions of all parameters (such
as the temperature and the magnetic field); but near a critical point they display peaks whose
height increases and whose width decreases as the volume V = Ld grows, yielding the critical
singularities in the limit L → ∞. For bulk experimental systems (containing V ∼ 1023

particles), the finite-size rounding of the phase transition is usually beyond the experimental
resolution; but in Monte Carlo simulations (V � 106−107) it is visible and is often the
dominant effect.

Finite-size scaling theory [1–4] provides a systematic framework for understanding finite-
size effects near a critical point. The idea is simple: the only two relevant length scales are the
system linear size L and the correlation length ξ∞ of the bulk system at the same parameters,
so everything is controlled by the single ratio ξ∞/L.1 If L � ξ∞, then finite-size effects are
1 This is true only for systems below the upper critical dimension dc. For Ising models with short-range interaction,
dc = 4.
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negligible; for L ∼ ξ∞, thermodynamic singularities are rounded and obey a scaling Ansatz
O ∼ LpOFO(ξ∞/L) where pO is a critical exponent and FO is a scaling function. Finite-size
scaling is the basis of the powerful phenomenological renormalization group method (see [3]
for a review); and it is an efficient tool for extrapolating finite-size data coming from Monte
Carlo simulations so as to obtain accurate results on critical exponents, universal amplitude
ratios and subleading exponents ([5–8], and references therein)2. In particular, in systems with
multiplicative and/or additive logarithmic corrections (such as the two-dimensional four-state
Potts model [10]), a good understanding of finite-size effects is crucial for obtaining reliable
estimates of the physically interesting quantities.

In finite-size-scaling theory for systems with periodic boundary conditions, three
simplifying assumptions have frequently been made:

(a) The regular part of the free energy, freg, is independent of the lattice size L [4] (except
possibly for terms that are exponentially small in L).

(b) The scaling fields associated with the temperature T and magnetic field h (i.e., µt and µh,
respectively) are independent of L [11].

(c) The scaling field µL associated with the lattice size equals L−1 exactly, with no corrections
L−2, L−3, . . . [4].

Moreover, in the nearest-neighbour spin-1/2 two-dimensional Ising model, it was further
assumed for many years that there are no irrelevant operators [12, 13]; indeed this assumption
was confirmed numerically through order (T − Tc)3, at least as regards the bulk behaviour of
the susceptibility in the isotropic square-lattice Ising model [13]. However, several authors
have recently found overwhelming evidence that there are indeed irrelevant operators playing
a role in the two-dimensional Ising model [14–20]. In particular, for the square-lattice
Ising model they have found by studying the bulk magnetic susceptibility that there is one
irrelevant operator contributing to order (T − Tc)4 and there is (at least) one irrelevant operator
contributing to order (T − Tc)6.

An interesting way to test assumptions (a)–(c) and see the effect of the irrelevant operators
is to compute the asymptotic expansion (in powers of L−1) of the free energy and its derivatives
with respect to the temperature at the critical point. The square-lattice Ising model is the best
understood case.

In a classic paper, Ferdinand and Fisher [21] considered the energy and the specific heat
of the square-lattice Ising model on a torus of width L and aspect ratio ρ, and obtained the first
two (respectively three) terms of the large-L asymptotic expansion of the energy (respectively
specific heat) at fixed x ≡ L(T − Tc) (this is the finite-size-scaling regime) and fixed ρ. In
particular, at criticality (T = Tc) they computed the finite-size corrections to both quantities to
order L−1. Their results have been improved at the critical point by several authors [22–25].
Their results can be summarized as follows:

f sq
c (L, ρ) = f

sq
bulk +

∞∑
m=1

f
sq

2m(ρ)

L2m
(1.1a)

Esq
c (L, ρ) = E0 +

∞∑
m=0

E
sq
2m+1(ρ)

L2m+1
(1.1b)

C
sq
H,c(L, ρ) = C

sq
00 log L + C

sq
0 (ρ) +

∞∑
m=1

C
sq
m (ρ)

Lm
(1.1c)

2 Finite-size scaling has also been successfully applied to the data coming from transfer-matrix computations [9].
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where fc, Ec and CH,c are, respectively, the critical free energy, internal energy and specific
heat3.

The first important observation is that there are no logarithmic corrections except for the
specific-heat leading term C

sq
00 log L. Secondly, the finite-size corrections are integer powers of

L−1, which is consistent with the irrelevant operators taking integer exponents. Furthermore,
not all the powers of L−1 occur; in the large-L expansion of the free energy (respectively
internal energy) only even (respectively odd) powers of L−1 can occur. In the specific-heat
expansion all powers of L−1 can appear. In addition, the coefficients C

sq
m and E

sq
m satisfy the

relation

E
sq
m (ρ)

C
sq
m (ρ)

=
{−1/

√
2 for m odd

0 for m even.
(1.2)

The authors of [20] classified (using conformal field theory) all possible irrelevant
operators that may occur in the two-dimensional Ising model and found that all their results
(in the thermodynamic limit and at criticality on a finite torus) can be explained in terms of
the following conjecture:

Conjecture 1.1 ([20], conjecture (d2)). The only irrelevant operators which appear in the
two-dimensional nearest-neighbour Ising model are those due to the lattice breaking of the
rotational symmetry.

In particular, for the square-lattice Ising model the first operator that breaks rotational
invariance is the spin-four operator T 2 + T̄ 2 (where here T is the energy–momentum operator)
whose renormalization-group exponent is y = −2. In [20] they showed that this operator can
give rise to all the observed corrections in (1.1)4.

In this paper we extend the above results to the triangular and hexagonal lattices. We
will obtain the large-L asymptotic expansions for the critical free energy, internal energy and
specific heat for such lattices wrapped on a torus of width L and fixed aspect ratio ρ. The
interest of this computation is three-fold. First, we can make a new test of conjecture 1.1.
In the triangular lattice, the first irrelevant operator (belonging to the identity family) that
breaks rotational invariance is T 3 + T̄ 3 with y = −6 [20]. If conjecture 1.1 is true, then
several coefficients in the finite-size-scaling expansions (1.1) should vanish. Second, we can
directly check whether the ratio (1.2) is universal or not, that is, if (1.2) depends or not on the
microscopic details of the lattice. Finally, the asymptotic expansions could be useful to check
Monte Carlo simulations.

A first study of the triangular-lattice Ising model partition function on a finite torus
was done by Nash and O’Connor [32]. They obtained (among other interesting results) the
exact expression of such a partition function with anisotropic nearest-neighbour couplings
and extracted its scaling limit. They computed the bulk contribution to the free energy fbulk

and the first finite-size correction f2(ρ). Here we will extend their results at the critical
point.

3 Janke and Kenna [26] have studied similar expansions for the square-lattice Ising model with Branscamp–Kunz
boundary conditions. The analytic structure is similar to (1.1) but additional terms arise due to the boundary conditions.
For instance, there is a term ∼log L/L in the specific heat. On the other hand, Lu and Wu [27] studied the critical free
energy for the square-lattice Ising model on non-orientable surfaces (namely, the Möbius strip and the Klein bottle).
They found the first terms of the large-L expansion of fc(L, ρ); although they did not give details about the analytic
structure of such expansion. In particular, there is an additional term ∼L−1 in the expansion for the Möbius strip
(due to ‘surface’ effects) which is absent in the Klein bottle. They also explicitly showed that the coefficient f

sq
2 (ρ)

depends on the boundary conditions (even if the expansion (1.1a) holds true).
4 A similar finite-size scaling analysis was carried out for the one-dimensional Ising quantum chain which belongs
to the same universality class of the two-dimensional Ising model [28–31].
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The main results of this paper can be summarized as follows

fc(L, ρ) = fbulk +
∞∑

m=1

f2m(ρ)

L2m
(1.3a)

Ec(L, ρ) = E0 +
∞∑

m=0

E2m+1(ρ)

L2m+1
(1.3b)

CH,c(L, ρ) = C00 log L + C0(ρ) +
∞∑

m=1

Cm(ρ)

Lm
(1.3c)

f (3)
c (L, ρ) = A1(ρ)L + A00 log L + A0(ρ) +

∞∑
m=1

Am(ρ)

Lm
(1.3d )

f
(4)
c,log(L, ρ) = B00 log L (1.3e)

where f (3)
c (respectively f

(4)

c,log) is the third derivative (respectively the logarithmic contribution
to the fourth derivative) of the free energy with respect to the inverse temperature β evaluated
at the critical point. We have also found explicit formulae for the coefficients f2(ρ), f6(ρ),
E1(ρ), E5(ρ), C00, C0(ρ), C1(ρ), C4(ρ), C5(ρ),A1(ρ), A00, A0(ρ), A1(ρ) and B00 (indeed,
f4 = f8 = E3 = E7 = C2 = C3 = A2 = 0).

Our results on the general analytic structure of the finite-size corrections to these
models are:

• The analytic structure of the finite-size-scaling corrections of the quantities considered
here is exactly the same for the triangular and the hexagonal lattices.

• The finite-size corrections to the free energy, internal energy and specific heat are always
integer powers of L−1, unmodified by logarithms (except, of course, for the leading log L
term in the specific heat).

• In the finite-size expansion of the free energy, only even integer powers of L−1 occur. The
only exceptions are the powers L−4 and L−8 whose coefficients vanish.

• In the finite-size expansion of the energy, we only find odd integer powers of L−1. In this
case, the coefficients associated with the powers L−3 and L−7 vanish.

• In the finite-size expansion of the specific heat, any integer powers of L−1 can occur,
except the terms L−2 and L−3. In addition, the non-zero coefficients of the odd powers
of L−1 in this expansion are proportional to the corresponding coefficients in the internal
energy expansion as in the square lattice.

• In the finite-size expansion of f (3)
c we find that the expected leading term L log L is

missing, and the actual leading term is simply L. We find that all powers of L−1 appear in
such expansion, except L−2.

• In the finite-size expansion of the fourth derivative of the free energy f (4)
c we find that

there is only a logarithmic term ∼log L, even though we expect two additional logarithmic
contributions of order L log L and L2 log L, respectively.

The above results are very useful to gain new insights into the renormalization-group
description of the two-dimensional Ising model. Our conclusions on this topic are:

• Some irrelevant operators should vanish at criticality. This happens, in particular, to the
less irrelevant one T T̄ with renormalization-group exponent y = −2.

• In order to give account of all the finite-size corrections, we should include at least two
irrelevant operators, in agreement with the results of [17, 18].
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• The scaling function Ŵ (x) (which is responsible for the logarithmic corrections to the
derivatives of the free energy) vanishes at criticality x = 0. Its first derivatives at criticality
satisfy

∂nW(x)

∂xn

∣∣∣∣
x=0

=
{

0 for n = 1, 3, 4
1/(λπ

√
3) for n = 2

(1.4)

where λ = 1 (respectively 2) for the triangular (respectively hexagonal) lattice. These
equations motivate the conjecture that Ŵ (x) = x2/(2λπ

√
3).

• The non-linear scaling field associated with the temperature can be computed for both
lattices and it is given by

µt(τ ) = τ − 1
24τ 3 + O(τ 5). (1.5)

This result provides a cross-check of the analysis of infinite-volume quantities [20].

The plan of this paper is as follows: in section 2, we present our definitions and notation.
In sections 3–6 we present the computation of the asymptotic expansions for the free energy,
internal energy,specific heat and higher derivatives of the free energy,respectively. In section 7,
we discuss the consequences of our results on the renormalization-group description of the
models. In particular, we will focus on the irrelevant operators of the model and on the finite-
size-scaling functions. Finally, in section 8, we present our conclusions and discuss the
results. We have summarized the technical details in the appendixes: in appendix A we recall
the Euler–MacLaurin formula, and in appendix B (respectively appendix C) we collect the
definitions and properties of the θ -functions (respectively Kronecker’s double series).

2. Basic definitions

Let us first consider an Ising model on a triangular lattice wrapped on a torus of size N × M
at zero magnetic field. The Hamiltonian is given by

H = −β
∑
〈i,j〉

σiσj . (2.1)

The partition function is given by

ZNM(β) =
∑

{σ=±1}
e−H. (2.2)

The dual of such triangular lattice is an hexagonal lattice wrapped on a torus of size N × M
and containing 2NM sites (i.e., the hexagonal lattice can be viewed as a triangular lattice with
a two-point basis). The Hamiltonian and the partition functions of the Ising model on this
lattice are also given by (2.1) and (2.2).

If one brushes aside some subtleties about boundary conditions, one can relate the partition
function (2.2) of a triangular-lattice Ising model at coupling β to the partition function of the
Ising model on the dual (i.e., hexagonal) lattice at a ‘dual’ coupling β& [33, 34]:

Ztri
NM(β) = Zhc

2NM(β&)21−2NM(2 sinh 2β)3NM/2 (2.3)

where β& is defined by

tanh β& = e−2β . (2.4)

Using equation (2.3) and the star-triangle equation [35] we can obtain the critical values of the
couplings for both models

βc =
{

1
4 log 3 triangular
1
2 log(2 +

√
3) hexagonal.

(2.5)
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However, this argument is strictly valid only in the infinite-volume limit; it gives the correct
relation

f tri(β) = 2f hc(β&) − 2 log 2 + 3
2 log(2 sinh 2β) (2.6)

between infinite-volume free energies and the correct critical points (2.5), but identity (2.3)
for finite-lattice partition functions does not, in general, hold. This is because a periodic
lattice is non-planar, so that the correct duality formula also involves a pair of ‘homological’
modes arising from the two directions of winding around the torus [36]. Or put it another
way: high-temperature graphs that wind around the lattice do not necessarily correspond to
low-temperature graphs on the dual lattice. Therefore, on a finite lattice—which is the subject
of this paper—we need to be more careful5.

We begin by computing the exact partition function of both models on a torus of size
N × M . One way to do this is by relating the Ising model to a dimer model [37]. The same
computation leading to the square-lattice partition function can be used to obtain the hexagonal-
lattice partition function [38] by changing the weights of the different dimer configurations.
Though the triangular-lattice Ising partition function cannot be derived from the hexagonal-
lattice partition function using duality (2.3), for the reasons given above, we can instead use the
star-triangle transformation [35]. Then, the triangular-lattice partition function Ztri

MN is related
to the hexagonal-lattice partition function Zhc

2MN (containing twice as much sites) by the formula

Ztri
MN(β) = R(β)−MNZhc

2MN(β̃) (2.7)

where the β̃ and R(β) are given by [35]

sinh 2β̃ = 1

κ(β)

1

sin 2β
(2.8a)

R(β)2 = 2

κ(β)2 sinh3 2β
(2.8b)

and κ (which depends on β through the parameter v = tanh β) is equal to [35]

κ(β) = (1 − v2)3

4
√

(1 + v3)v3(1 + v)3
. (2.9)

After straightforward (but lengthy) algebra we find that the partition function for both lattices
can be written in a very similar way in the ferromagnetic regime:

ZV (β) = 1

2
(2 sin 2β)V/2

∑
α,β=0,1/2

Zα,β(µ) (2.10)

where V is the number of spins in the lattice (e.g., V = NM in the triangular lattice and
V = 2NM in the hexagonal lattice). The functions Zα,β(µ) are given by

Zα,β(µ)2 =
N−1∏
n=0

M−1∏
m=0

4

{
sin2

(
π(n + α)

N

)
+ sin2

(
π(m + β)

M

)

+ sin2

(
π(m + β)

M
− π(n + α)

N

)
+ 2 sinh2 µ

}
(2.11)

where the ‘mass’ term µ is given by

e2µ =
{ 1

2 (e4β − 1) triangular
2 sinh2 β hexagonal.

(2.12)

The critical point corresponds to the vanishing of the mass, thus giving (2.5).
5 We thank Alan Sokal for useful clarifications about this point.
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Remark. The fact that the partition function of both lattices depends on the same functions
Zα,β(µ) can be explained by noting that the translational symmetry of both lattices is the same
(i.e., they have the same underlying Bravais lattice). This issue explains why the finite-size
expansions are so similar in both lattices.

The functions Zα,β(µ) can be expanded in powers of µ. In particular, when (α, β) �= (0, 0)

the functions are even in µ, while Z0,0(µ) is an odd function of µ:

Zα,β(µ) = Zα,β(0) +
1

2!
Z′′

α,β(0)µ2 + · · · (α, β) �= (0, 0) (2.13)

Z0,0(µ) = µZ′
α,β(0) +

1

3!
Z′′′

α,β(0)µ3 + · · · . (2.14)

This is similar to what happens in the square-lattice Ising model [25].
We are interested in computing the asymptotic expansions for large N and M with fixed

aspect ratio (e.g. length to width ratio):

ρ = M

N
(2.15)

of the free energy f (β; N, ρ), internal energy E(β; N, ρ) and specific heat CH (β; N, ρ) at
the critical point β = βc. These quantities are defined as follows:

f (β; N, ρ) = 1

V
log ZV (β) (2.16a)

E(β; N, ρ) = − ∂

∂β
f (β; N, ρ) (2.16b)

CH (β; N, ρ) = ∂2

∂β2
f (β; N, ρ). (2.16c)

ln section 6 we will also consider higher derivatives of the free energy at criticality

f (k)
c (N, ρ) = ∂k

∂βk
f (β; N, ρ)

∣∣∣∣
β=βc

(2.17)

with k = 3, 4.

Remark. The definition of the specific heat (2.16c) is somewhat non-standard as it does not
contain the factor β2.

3. Finite-size-scaling corrections to the free energy

Let us start with the basic quantity Zα,β (2.11) and write it in the form

Zα,β(µ) =
N−1∏
n=0

M−1∏
m=0

4

{
cosh 2µ + sin2

(
π(n + α)

N

)

− cos

(
π(n + α)

N

)
cos

(
2π(m + β)

M
− π(n + α)

N

)}
. (3.1)

The product over m in (3.1) can exactly be performed with the help of the following
identity [32]:

M−1∏
m=0

[
ζ − λ cos

(
2π(m + β)

M

)]
=
(

λz+

2

)M

|1 − z− e−2π iβ |2 (3.2)
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where ζ and λ are any two real numbers such that |ζ/λ| � 1 and the quantities z± are
given by

z± = ζ

λ
±
√(

ζ

λ

)2

− 1 (3.3a)

z+z− = 1. (3.3b)

We can finally write Zα,β(µ) as

Zα,β(µ) = 2NM/2
N−1∏
n=0

(
cosh 2µ + sin2 φn+α +

√[
cosh 2µ + sin2 φn+α

]2 − cos2 φn+α

)M/2

×
N−1∏
n=0

∣∣1 − z−(n + α, N, µ)M e−2π iβ+M iφn+α
∣∣ (3.4)

where we have used the shorthand notation

z±(k, N, µ) =
cosh 2µ + sin2 φk ±

√[
cosh 2µ + sin2 φk

]2 − cos2 φk

cos φk

(3.5a)

φk = πk

N
. (3.5b)

Let us now evaluate the functions Zα,β(0) for (α, β) �= (0, 0). We follow here the
procedure used in [25], which proved to be very efficient for extracting the large-N asymptotic
expansions of the quantities of interest. We first compute the sum

f1 = M

2

N−1∑
n=0

log
[
1 + sin2 φn+α + sin φn+α

√
3 + sin2 φn+α

]
= M

2

N−1∑
n=0

ω1(φn+α) (3.6)

where

ω1(k) = log[1 + sin2 k + sin k
√

3 + sin2 k] = λk +
∞∑

k=2

kp

p!
λp. (3.7)

The function ω1 and all its derivatives are integrable over [0, π], and in addition,

ω
(k)
1 (π) − ω

(0)
1 (0) =

{−2ω
(k)

1 (0) k = 2, 6, 10, 12, 14, . . .

0 otherwise.
(3.8)

We can now use the Euler–MacLaurin summation formula (A.6) to obtain

1

N

N−1∑
n=0

ω1(φn+α) = 1

π

∫ π

0
ω1(x) dx − λ

πN2
B2(α) −

∞∑
m=1

( π

N

)2m B2m+2(α)

(2m + 2)!
λ2m+1. (3.9)

The first coefficients λk are

λ =
√

3 λ3 = λ7 = 0 λ5 = 16√
3

λ9 = 1792
√

3 λ11 = −51 200√
3

.

(3.10)

The final result for f1 is

f1 = NM

2π

∫ π

0
ω1(x) dx − πλρ

2
B2(α) − πρ

∞∑
m=1

( π

N

)2m B2m+2(α)

(2m + 2)!
λ2m+1. (3.11)
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Let us now consider the quantity f2

f2 =
N−1∑
n=0

log
∣∣1 − z−(n + α, N, 0)M e−2π iβ+M iφn+α

∣∣ . (3.12)

We first note that when n + α = N/2, the factor z−(n + α, N, 0) = 0, so this term does not
contribute to the sum (3.12). In the other cases z−(n + α, N, 0) does not vanish and we can
use (3.3b) to write (3.12) as

f2 =
N−1∑′
n=0

log
∣∣1 − e−M log z+(n+α,N,0)−2π iβ+M iφn+α

∣∣ (3.13)

where
∑′ means that we have taken out the term with n + α = N/2 (if such a term exists).

We now proceed as in [25]: we first write log |1 − e−A| = Re log(1 − e−A) and then
expand log(1 − e−A) as a power series in e−A:

f2 = −Re
∞∑

p=1

N−1∑′
n=0

1

p
e−2p[M(log z+(n+α,N,0)−iφn+α)/2+π iβ]. (3.14)

It is convenient to write the function log z+(k, N, 0) as

log z+(k, N, 0) ≡ ω2(φk) = ω1(φk) − log cos φk (3.15)

where ω1(k) is the function (3.7). We then split the sum over n into two parts: n ∈
[0, �N/2� − 1], and n ∈ [�N/2�, N − 1]. By making the substitution n → N − 1 − n

in the second sum, we finally obtain

f2 = −Re
∞∑

p=1

�N/2�−1∑′
n=0

1

p
e−2p(M[w2(φn+α)−iφn+α]+iπβ)

− Re
∞∑

p=1

N−�N/2�−1∑′
n=0

1

p
e−2p(M[w2(φn+1−α)−iφn+α ]−iπβ). (3.16)

We now expand the function ω2(k) as a power series in k

ω2(k) = λk +
∞∑

m=1

λ2m+1

(2m + 1)!
k2m+1 (3.17)

where the λk are exactly those of the function ω1 (3.10). We obtain an expression of the form

f2 = −Re
∞∑

p=0

1

p

�N/2�−1∑′
n=0

e−2p[πτ0ρ(n+α)+iπβ] exp

{
−πpρ

∞∑
m=1

( π

N

)2m λ2m+1

(2m + 1)!
(n + α)2m+1

}

− Re
∞∑

p=0

1

p

N−�N/2�−1∑ ′
n=0

e−2p[πτ0ρ(n+1+α)−iπβ]

× exp

{
−πpρ

∞∑
m=1

( π

N

)2m λ2m+1

(2m + 1)!
(n + 1 − α)2m+1

}
(3.18)

where τ0 is a complex number equal to

τ0 = λ − i

2
=

√
3 − i

2
= e−iπ/6. (3.19)
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The next step consists in expanding the exponentials in powers of N−k . By following the
procedure introduced in [25, appendix B] we obtain

f2 = −Re
∞∑

p=0

1

p

�N/2�−1∑′
n=0

{
1 − pπρ

∞∑
m=1

( π

N

)2m 12m+1

(2m + 1)!
(n + α)2m+1

}
e{−2p[πτ0ρ(n+α)+iπβ]}

− Re
∞∑

p=0

1

p

N−�N/2�−1∑′
n=0

{
1 − pπρ

∞∑
m=1

( π

N

)2m 12m+1

(2m + 1)!
(n + 1 − α)2m+1

}

× e{−2p[πτ0ρ(n+1+α)−iπβ]} (3.20)

where the 1k are certain differential operators. The first ones are

13 = 17 = 0 (3.21a)

15 = λ5 (3.21b)

19 = λ9 +
63

5
λ2

5
∂

∂λ
(3.21c)

λ11 = λ11. (3.21d)

We can now extend the sum over n to n = ∞ as the error is exponentially small. On the
other hand, the contribution of the term with n + α = N/2 is also exponentially small, so we
can take out this constraint. Then, after rearranging the sums, we obtain

f2 =
∞∑

n=0

log
∣∣1 − e−2π [ρτ0(n+α)+iβ]

∣∣ +
∞∑

n=0

log
∣∣1 − e−2π [ρτ0(n+1−α)−iβ]

∣∣
+ πρ

∞∑
m=1

( π

N

)2m 12m+1

(2m + 1)!
Re

∞∑
p=1

∞∑
n=0

{
(n + α)2m+1 e−2pπ [ρτ0(n+α)+iβ]

+ (n + 1 − α)2m+1 e−2pπ [ρτ0(n+1−α)+iβ]
}
. (3.22)

The desired result can be obtained by plugging in (B.13)/(C.2):

f2 = log

∣∣∣∣θα,β(iτ0ρ)

η(iτ0ρ)

∣∣∣∣ +
πλρ

2
B2(α)

+ πρ

∞∑
m=1

( π

N

)2m 12m+1

(2m + 2)!

[
B2m+2(α) − Re K

α,β

2m+2(iτ0ρ)
]

(3.23)

where the elliptic θ -function θα,β and the Dedekind’s η-function are defined in appendix B, the
objects Bp(α) are Bernoulli polynomials defined in appendix A, and K

α,β

2m+2 are Kronecker’s
double series defined in appendix C. Then, the value of Zα,β(0) is given by

log Zα,β(0) = NM

2
log 2 +

NM

2π

∫ π

0
ω1(t) dt + log

∣∣∣∣θα,β(iτ0ρ)

η(iτ0ρ)

∣∣∣∣
− πρ

∞∑
m=1

( π

N

)2m 12m+1

(2m + 2)!
Re K

α,β

2m+2(iτ0ρ). (3.24)

The free energy at the critical point can be computed directly from (2.10):

fc(N, M) = − 1

V
log 2 +

1

2
log(2 sinh 2βc) +

1

V
log
∑
α,β

Zα,β(0). (3.25)
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Table 1. Values of the coefficients f tri
2 (ρ) and f tri

6 (ρ) for several values of the torus aspect ratio ρ.

ρ f tri
2 (ρ) f tri

6 (ρ)

1 0.636 514 168 294 813 0.084 178 614 254 145
2 0.340 929 552 077 890 0.052 778 553 027 830
3 0.267 452 513 800 776 0.069 393 489 802 385
4 0.242 663 080 213 048 0.079 193 473 629 707
5 0.233 284 972 993 438 0.084 621 760 086 675
6 0.229 516 370 606 439 0.087 503 667 615 417
7 0.227 941 884 733 430 0.088 999 315 024 483
8 0.227 265 427 814 348 0.089 766 374 485 276
9 0.226 968 542 233 183 0.090 157 377 673 790

10 0.226 836 041 806 366 0.090 356 069 258 841
11 0.226 776 103 731 001 0.090 456 876 341 452
12 0.226 748 689 100 100 0.090 507 980 191 895
13 0.226 736 034 656 892 0.090 533 876 582 898
14 0.226 730 148 221 756 0.090 533 876 582 898
15 0.226 727 392 017 273 0.090 553 643 011 573
16 0.226 726 094 176 590 0.090 557 009 779 414
17 0.226 725 480 047 888 0.090 558 715 190 155
18 0.226 725 188 196 890 0.090 559 579 041 296
19 0.226 725 048 974 839 0.090 560 016 609 581
20 0.226 724 982 337 581 0.090 560 238 251 165
∞ 0.226 724 920 529 277 0.090 560 465 757 793

The result (3.24) means that the free energy for both lattices can be written as

fc(N, ρ) = fbulk +
∞∑

m=1

f2m(ρ)

N2m
. (3.26)

Thus, only even powers of N−1 can occur, and in contrast to what happens in the square-lattice,
we find some even powers whose coefficient vanishes (e.g., f4 = f8 = 0). The above result
agrees with the formula found by Izmailian and Hu [41] for an Ising model on a N × ∞
hexagonal (or triangular) lattice with periodic boundary conditions.

The first coefficients for the triangular lattice are given by

f tri
bulk = 1

2
log

4√
3

+
1

2π

∫ π

0
ω1(t) dt ≈ 0.879 585 3861 . . . (3.27a)

f tri
2 (ρ) = 1

ρ
log

|θ2| + |θ3| + |θ4|
2|η| (3.27b)

f tri
4 (ρ) = f tri

8 (ρ) = 0 (3.27c)

f tri
6 (ρ) = − π5

45
√

3
Re

|θ4|K
1
2 ,0

6 + |θ2|K0, 1
2

6 + |θ3|K
1
2 , 1

2
6

|θ2| + |θ3| + |θ4| (3.27d)

where the θi are the standard θ -functions defined in (B.10) and the functions K
α,β

6 are given
in terms of θ -functions in (C.4). As explained in appendix B, all the functions θi , η and K

α,β
p

are evaluated at z = 0 and τ = iτ0ρ (B.11). The numerical values of these coefficients for
several values of ρ can be found in table 1.
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The coefficients of the hexagonal-lattice expansion are found to be

f hc
bulk = 1

2
log 2

√
6 +

1

4π

∫ π

0
ω1(t) dt ≈ 1.025 059 0964 . . . (3.28a)

f hc
2m(ρ) = 1

2f tri
2m(ρ). (3.28b)

The numerical values of the coefficients f hc
2 and f hc

6 can be obtained from table 1 with the
help of (3.28b).

Remarks.

1. The values of the bulk critical free energy (3.27a)/(3.28a) indeed coincide with the
values obtained from the well-known results in the thermodynamic limit [39, 40, 38]
when β = βc:

f tri
bulk(β) = 1

2

∫ π

0

∫ π

0

dx dy

4π2
log[cosh3 2β + sinh3 2β − ω(x, y) sinh 2β] + log 2 (3.29a)

f hc
bulk(β) = 1

4

∫ π

0

∫ π

0

dx dy

4π2
log[1 + cosh3 2β − ω(x, y) sinh2 2β] +

3

4
log 2 (3.29b)

where

ω(x, y) = cos x + cos y + cos(x − y). (3.30)

2. The limiting values of the coefficients f2 and f6 as ρ → ∞ are easily found to be
(cf (B.12))

lim
ρ→∞ f tri

2 (ρ) =
√

3π

24
(3.31a)

lim
ρ→∞ f tri

6 (ρ) = 31π5

60 480
√

3
. (3.31b)

The corresponding limiting values for the hexagonal lattice are one half of the above
values (cf (3.28b)).

3. Using the properties of the θ -functions (B.20)/(B.21) and of the functions K
α,β

6
(C.5)/(C.6) we can easily check that the terms (3.27b)/(3.27d) have the correct behaviour
under the transformation N ↔ M(ρ → 1/ρ). In particular,

f2(ρ) = f2(1/ρ)

ρ2
(3.32)

f6(ρ) = f6(1/ρ)

ρ6
. (3.33)

4. From (3.24)/(3.21) we see that there is, in general, a non-zero contribution to log Zα,β(0)

at any order N−2m with m � 4. However, we cannot rule out cancellations leading to
the vanishing of any of the coefficients f2m(ρ) with m � 5 in (3.26). Similar arguments
apply to the other large-N expansions in the next sections.
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4. Finite-size-scaling corrections to the internal energy

Now we will deal with the internal energy (2.16b). Using (2.10)/(2.13) we can write the
critical internal energy as follows:

−Ec(N, ρ) = coth 2βc +
1

V

dµ

dβ

∣∣∣∣
β=βc

Z′
0,0(0)∑

α,β

Zα,β(0)
. (4.1)

The derivative dµ/dβ can easily be computed from equation (2.12). Thus, the only unknown
object is Z′

0,0(0), which can be written as

Z′
0,0(0) = 2M 2NM/2

N−1∏
n=0

(
1 + sin2 φn + sin φn

√
3 + sin2 φn

)M/2 N−1∏
n=1

∣∣1 − z−(n, N, 0)M eM iφn
∣∣ .

(4.2)

By noting that the first product is nothing more than f1 (3.6) with α = 0, we can write (4.2) as

log Z′
0,0(0) = NM

2
log 2 + log 2M +

NM

2π

∫ π

0
ω1(t) dt − πρλ

2
B2(0)

− πρ

∞∑
m=1

( π

N

)2m B2m+2(0)

(2m + 2)!
λ2m+1 +

N−1∑
n=1

log
∣∣1 − z−(n, N, 0)M eM iφn

∣∣ . (4.3)

The last sum in (4.3) is equal to the definition of f2 (3.12) with α = 0, except for the
fact that the sum in (4.3) starts at n = 1 rather than at n = 0. We can follow step by step
the same procedure leading to (3.22): the result coincides with (3.22) when α = 0 except
that the first sum in (3.22) now starts at n = 1. Using (B.16)/(C.2) we obtain the final
result

log Z′
0,0(0) = NM

2
log 2 + log 2M +

NM

2π

∫ π

0
ω1(t) dt + 2 log |η(iτ0ρ)|

− πρ

∞∑
m=1

( π

N

)2m 12m+1

(2m + 2)!
Re K

0,0
2m+2(iτ0ρ). (4.4)

This equation implies that the critical internal energy can be written as a power series in N−1:

−Ec(N, ρ) = E0 +
∞∑

m=0

E2m+1(ρ)

N2m+1
. (4.5)

For the triangular lattice we find that

Etri
0 = 2 (4.6a)

Etri
1 (ρ) = 3|θ2θ3θ4|

|θ2| + |θ3| + |θ4| (4.6b)

Etri
3 (ρ) = Etri

7 (ρ) = 0 (4.6c)

Etri
5 (ρ) = − π5ρ

15
√

3

|θ2θ3θ4|
(|θ2| + |θ3| + |θ4|)2

Re
{
(|θ2| + |θ3| + |θ4|)K0,0

6

− |θ4|K
1
2 ,0

6 − |θ2|K0, 1
2

6 − |θ3|K
1
2 , 1

2
6

}
(4.6d)
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Table 2. Values of the coefficients Etri
1 (ρ) and Etri

5 (ρ) for several values of the torus aspect
ratio ρ.

ρ Etri
1 (ρ) Etri

5 (ρ)

1 1.017 408 797 595 956 −0.359 705 063 388 737
2 0.612 513 647 162 813 −0.178 088 378 079 924
3 0.345 040 108 164 264 −0.168 599 461 543 254
4 0.185 288 835 745 847 −0.127 979 167 922 216
5 0.096 804 501 605 795 −0.086 206 117 890 971
6 0.049 827 662 298 672 −0.054 108 487 929 080
7 0.025 447 703 091 251 −0.032 506 071 497 113
8 0.012 944 169 002 509 −0.018 975 959 727 317
9 0.006 570 580 061 525 −0.010 859 541 565 321

10 0.003 331 786 807 789 −0.006 125 084 912 961
11 0.001 688 570 266 906 −0.003 416 526 641 140
12 0.000 855 546 533 105 −0.001 888 941 526 185
13 0.000 433 419 665 204 −0.001 036 828 005 370
14 0.000 219 555 049 642 −0.000 565 662 233 279
15 0.000 111 214 898 315 −0.000 307 012 198 010
16 0.000 056 334 542 069 −0.000 165 883 847 105
17 0.000 028 535 313 425 −0.000 089 278 100 310
18 0.000 014 454 016 292 −0.000 047 882 460 122
19 0.000 007 321 388 062 −0.000 025 601 385 603
20 0.000 003 708 495 908 −0.000 013 650 380 771
∞ 0 0

where we have used (B.15)/(C.4). The numerical values of these coefficients can be found in
table 2. In the hexagonal-lattice case we obtain

Ehc
0 = 2√

3
(4.7a)

Ehc
2m+1(ρ) = Etri

2m+1(ρ)

2
√

3
. (4.7b)

The numerical values of the coefficients Ehc
1 and Ehc

5 can be obtained from table 2 by using
(4.7b).

Remarks.

1. The limiting values of the coefficients E1and E5 as ρ →∞ are easily found to be (cf (B.12))
lim

ρ→∞ E1(ρ) = lim
ρ→∞ E5(ρ) = 0. (4.8)

This formula is valid for the triangular and hexagonal lattices. In particular, we expect that
all the coefficients E2m+1(ρ) will vanish in the limit ρ → ∞ due to the existence of
the factor |θ2θ3θ4| which vanishes exponentially fast. Thus, on an infinitely long torus,
the internal energy for any finite width N is equal to the bulk value E0 with no finite-size
corrections.

2. Using the properties of the θ -functions (B.20)/(B.21) and of the functions K
α,β

6
(C.5)/(C.6) we can easily check that the coefficients E1 and E5 (4.6b)/(4.6d)/(4.7b)
have the correct behaviour under the transformation ρ → 1/ρ. In particular,

E1(ρ) = E1(1/ρ)

ρ
(4.9)

E5(ρ) = E5(1/ρ)

ρ5
. (4.10)
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5. Finite-size-scaling corrections to the specific heat

The specific heat at criticality is given by the following formula:

CH,c = −2

sinh2 2βc

+
1

V

d2µ

dβ2

∣∣∣∣
β=βc

Z′
0,0(0)∑

α,β

Zα,β(0)

+
1

V

dµ

dβ

∣∣∣∣
2

β=βc



∑
α,β

Z′′
α,β(0)

∑
α,β

Zα,β(0)
−


 Z′

0,0(0)∑
α,β

Zα,β(0)




2
 . (5.1)

The main goal of this section is to compute the ratio∑
α,β

Z′′
α,β(0)

∑
α,β

Zα,β(0)
(5.2)

where the sums go over (α, β) �= (0, 0). After some algebra, we can write the derivative
Z′′

α,β(0) as follows

Z′′
α,β(0) = 4MN

π
√

3
Zα,β(0)

[
S(1)

α + 2S(2)
α,β +

π
√

3

4
ρ δα,0

]
(5.3)

where the sums S(j) are given by

S(1)
α = π

√
3

2N

N−1∑
n=δα,0

1

sin φn+α

√
3 + sin2 φn+α

(5.4a)

S(2)
α,β = π

√
3

2N
Re

N−1∑
n=δα,0

1

sin φn+α

√
3 + sin2 φn+α

zM
− e−2π iβ+M iφn+α

1 − zM− e−2π iβ+M iφn+α

. (5.4b)

The variables φn+α and z− = z−(n + α, N, 0) are given by (3.5) and δα,0 is the usual Kronecker’s
delta.

The first step is to compute the sum S(1)
α (5.4a). We will follow a procedure similar to the

one used in [24] for the square lattice. Let us define the function

ω3(k) =
√

3

sin k
√

3 + sin2 k
− 1

k
+

1

k − π
. (5.5)

This function and all its derivatives are integrable over the interval [0, π], so we can apply the
Euler–MacLaurin formula (A.6). The final result is

S(1)
α (N) =

N−1∑
n=δα,0

1

n + α
+

1

2N
δα,0 +

1

2

∫ π

0
ω3(t) dt −

∞∑
m=1

( π

N

)2m B2m(α)

(2m)!
γ̃2m−1 (5.6)

where the coefficients γ̃2m−1 come from the expansion of ω3(k) in powers of k:

ω3(k) =
∞∑

m=0

γ̃m

m!
km (5.7a)

= −
∞∑

m=0

km

πm+1
+

∞∑
m=1

γ2m+1

(2m + 1)!
k2m+1. (5.7b)
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In general, the coefficient γ̃m contains two contributions: one comes from the term 1/(k − π)
which gives the (trivial) coefficient −π−(m+1)m!, and the other contribution comes from the
first two terms in the lhs of (5.5). We will denote by γ m this latter (non-trivial) contribution.
In particular, only the coefficients γ2m+1 with m = 1, 2, 3, . . . are non-zero. The first non-
vanishing coefficients γ m are

γ3 = 8
15 γ5 = − 80

21 γ7 = 448
5 . (5.8)

On the other hand, the value of the integral in (5.6) is

1

2

∫ π

0
ω3(t) dt = log

√
3

π
. (5.9)

In computing the sums
∑N−1

n=δα,0
(n + α)−1 we will use the result (see, e.g., [42])

N∑
n=1

1

N
= log N + γE +

1

2N
−

∞∑
k=1

B2k

2k

1

N2k
(5.10)

(where γE ≈ 0.577 215 6649 is the Euler constant) and take into account that α = 0, 1/2. In
the simplest case α = 0 we have

S(1)

0 (N) = log N + γE + log

√
3

π
−

∞∑
m=1

( π

N

)2m B2m

(2m)!
γ̃2m−1 +

1

2N

+
1

2(N − 1)
+ log

(
1 − 1

N

)
−

∞∑
m=1

B2m

2m

1

(N − 1)2m
. (5.11)

This expression can be simplified by expanding it in powers of N−1, and then using formulae
(A.9)/(A.10). A further simplification can be made if we take into account (5.7b). The final
result for α = 0 is

S(1)

0 (N) = log N + γE + log

√
3

π
−

∞∑
m=2

( π

N

)2m B2m

(2m)!
γ2m−1. (5.12)

The value for α = 1/2 can be obtained using similar arguments in addition to (A.3). The final
result for S(1)

α is

S(1)
α (N) = log N + γE + log

4
√

3

π
− log 4 δα,0 −

∞∑
m=2

( π

N

)2m B2m(α)

(2m)!
γ2m−1. (5.13)

In the above result only the non-trivial Taylor coefficients of the function ω3 enter.
The second step is to compute the sums S(2)

α,β (5.4b). The procedure is similar to those
already done in sections 3 and 4. We first write

z−(n + α, N, 0)M = e−M log z−(n+α,N,0) = e−Mω2(φn+α) (5.14)

where the function ω2 has been defined in (3.15). Then we split the sum
∑N−1

n=δα,0
into two

parts: n ∈ [δα,0, �N/2� − 1] and n ∈ [�N/2�, N − 1]. In the second sum we perform the
change n → N − 1 − n and using the properties of ω3 we arrive at

S(2)
α,β = π

√
3

2N
Re


�N/2�−1∑

n=δα,0

1

sin φn+α

√
3 + sin2 φn+α

e−2[M(ω2(φn+α)−iφn+α)/2+π iβ]

1 − e−2[M(ω2(φn+α)−iφn+α)/2+π iβ]

+
N−�N/2�−1∑

n=0

(
α → 1 − α

β → −β

) (5.15)
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where the second term is the same as the first one with (α, β) replaced by (1− α, −β). Now
we perform several Taylor expansions: first, we expand the denominator 1 − e−2A in powers
of e−2A:

S(2)
α,β = π

√
3

2N
Re


�N/2�−1∑

n=δα,0

∞∑
p=1

e−2p[M(ω2(φn+α)−iφn+α)/2+π iβ]

sin φn+α

√
3 + sin2 φn+α

+
N−�N/2�−1∑

n=0

∞∑
p=1

e−2p[M(ω2(φn+1−α)−iφn+1−α)/2−π iβ]

sin φn+1−α

√
3 + sin2 φn+1−α


 . (5.16)

Secondly, we expand e−2p(Mω2/2) as we did in (3.18) and finally, we expand the function

√
3

sin k
√

3 + sin2 k
= ω3(k) +

1

k
− 1

k − π
= 1

k
+

∞∑
m=1

γ2m+1

(2m + 1)!
k2m+1 (5.17)

in powers of k. After rearranging the series, extending the sums over n to ∞ (as the error is
exponentially small) and using (B.14)/(C.2) we obtain

S(2)
α,β = −Re log θα,β +

[
log 2 − πρ

√
3

8

]
δα,0

+
1

2

∞∑
k=1

( π

N

)2k+2 γ2k+1

(2k + 2)!

[
B2k+2(α) − Re K

α,β

2k+2(iτ0ρ)
]

− πρ

2

∞∑
k,m=1

( π

N

)2m+2k+2 12m+1

(2m + 1)!

γ2k+1

(2k + 2)!
W

α,β

2m+2k+2(iτ0ρ)

− πρ

2

∞∑
m=1

( π

N

)2m 12m+1

(2m + 1)!
W

α,β

2m (iτ0ρ) (5.18)

where the function W
α,β
m (τ ) is defined as follows:

Wα,β
m (τ ) = Re

∞∑
n=0

[
(n + α)m e2π i(τ (n+α)−β)(

1 − e2π i(τ (n+α)−β)
)2 + (n + 1 − α)m e2π i(τ (n+1−α)+β)(

1 − e2π i(τ (n+1−α)+β)
)2
]

.

(5.19)

The ratio Z′′
α,β(0)/Zα,β(0) (5.3) can be written as a power series in N−1:

1

MN

Z′′
α,β(0)

Zα,β(0)
= 4

π
√

3

[
log N + γE + log

4
√

3

2
− 2 Re log θα,β

]
+

∞∑
m=2

d̃
α,β

2m (ρ)

N2m
. (5.20)

This series contains only even powers of N−1 and it starts at N−4 (i.e., d̃
α,β

2 = 0). The first

non-vanishing coefficient d̃
α,β

2m is

d̃
α,β

4 (ρ) = −π4

45
Re K

α,β

4 (iτ0ρ) − 2π5ρ

15
√

3
W

α,β

4 (iτ0ρ). (5.21)

It is worth noticing that the terms with δα,0 in (5.3)/(5.13)/(5.18) cancel out exactly.
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Table 3. Values of the coefficients d0(ρ) and d4(ρ) for several values of the torus aspect ratio ρ.

ρ d0(ρ) d4(ρ)

1 0.993 000 152 525 293 −0.034 652 876 469 773
2 1.205 930 021 583 709 −0.084 727 027 938 228
3 1.233 520 243 783 654 −0.146 295 429 270 869
4 1.189 798 214 112 785 −0.167 434 330 275 211
5 1.134 144 577 781 982 −0.157 595 538 508 037
6 1.088 416 663 135 744 −0.134 596 242 800 881
7 1.056 420 958 518 946 −0.110 373 125 092 552
8 1.035 808 103 247 928 −0.090 138 741 047 513
9 1.023 167 108 495 542 −0.075 083 168 632 513

10 1.015 661 512 376 353 −0.064 637 113 563 536
11 1.011 305 166 086 030 −0.057 721 974 432 342
12 1.008 818 898 345 350 −0.053 296 998 167 206
13 1.007 418 256 678 703 −0.050 537 602 364 217
14 1.006 637 342 854 852 −0.048 851 578 543 533
15 1.006 205 629 259 680 −0.047 838 335 036 578
16 1.005 968 648 007 326 −0.047 237 747 222 882
17 1.005 839 340 365 928 −0.046 885 886 437 925
18 1.005 769 147 640 350 −0.046 681 800 486 309
19 1.005 731 215 221 337 −0.046 564 452 961 825
20 1.005 710 797 002 295 −0.046 497 492 807 615
∞ 1.005 687 333 437 919 −0.046 411 250 116 879

The computation of the ratio (5.2) is straightforward from (3.24)/(5.20). The leading
term grows like log N and the rest can be expressed as a power series in N−1 where only even
powers of N−1 enter

1

MN

∑
α,β

Z′′
α,β(0)

∑
α,β

Zα,β(0)
= 4

π
√

3
log N + d0(ρ) +

∞∑
m=2

d2m(ρ)

N2m
. (5.22)

The coefficient associated with N−2 vanishes, so the first two non-zero coefficients dm(ρ) are

d0(ρ) = 4

π
√

3

[
γE + log

4
√

3

π
− 2

∑ |θi| Re log θi∑ |θi|

]
(5.23a)

d4(ρ) = −4π3

45


2πρ

3



(∑ |θi| Re log θi

) (∑ |θα,β | Re K
α,β

6

)
(∑ |θi|

)2

−
∑ |θα,β | Re K

α,β

6 Re log θα,β∑ |θi|




+
1√
3

(∑ |θα,β | Re K
α,β

4

)
∑ |θi| + 2πρ

∑ |θα,β |Wα,β

4∑ |θi|


 (5.23b)

where we have denoted by θi the θ -functions in the standard notation (B.10). The numerical
values of these coefficients can be found in table 3.
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Remarks.

1. The limiting values of the coefficients d0 and d4 as ρ → ∞ are easily found to be
(cf (B.12))

lim
ρ→∞ d0(ρ) = 4

π
√

3

[
γE + log

4
√

3

π

]
(5.24a)

lim
ρ→∞ d4(ρ) = − 7π3

2700
√

3
. (5.24b)

2. Using the properties of the θ -functions (B.20)/(B.21) we can easily verify that d0(ρ) has
the right behaviour under the transformation N ↔ M (ρ → 1/ρ):

4

π
√

3
log ρ + d0(1/ρ) = d0(ρ). (5.25)

The behaviour of d4(ρ) under this transformation can be checked numerically to be the
right one

d4(ρ) = d4(1/ρ)

ρ4
. (5.26)

The specific heat for the triangular and hexagonal lattices can be obtained from (5.1) and
using the results of this section and of section 4. In particular, we can write for both lattices

CH,c(N, ρ) = C00 log N + C0(ρ) +
∞∑

m=1

Cm(ρ)

Nm
. (5.27)

For the triangular lattice the first coefficients are given by

Ctri
00 = 12

√
3

π
(5.28a)

Ctri
0 (ρ) = 9d0(ρ) − 6 − ρEtri

1 (ρ)2 (5.28b)

Ctri
1 (ρ) = −2Etri

1 (ρ) (5.28c)

Ctri
2 (ρ) = Ctri

3 (ρ) = 0 (5.28d)

Ctri
4 (ρ) = 9d4(ρ) − 2ρEtri

1 (ρ) Etri
5 (ρ) (5.28e)

Ctri
5 (ρ) = −2Etri

5 (ρ) (5.28f )

and for the hexagonal lattice the corresponding coefficients are

Chc
00(ρ) = 2

√
3

π
(5.29a)

Chc
0 (ρ) = 3

2 d0(ρ) − 2
3 − 2ρEhc

1 (ρ)2. (5.29b)

Chc
1 (ρ) = − 2√

3
Ehc

1 (ρ) (5.29c)

Chc
2 (ρ) = Chc

3 (ρ) = 0 (5.29d)

Chc
4 (ρ) = 3

2 d4(ρ) − 4ρ Ehc
1 (ρ) Ehc

5 (ρ) = 1
6Ctri

4 (ρ) (5.29e)

Chc
5 (ρ) = − 2√

3
Ehc

5 (ρ). (5.29f )

The numerical values of the coefficients Ctri
0 , Ctri

4 and Chc
0 can be found in table 4. The values

of the coefficients C1 and C5 can be obtained from table 2, and the value of Chc
4 can be read

from table 4 with the help of (5.29e).
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Table 4. Values of the coefficients Ctri
0 (ρ),C tri

4 (ρ) and Chc
0 (ρ) for several values of the torus aspect

ratio ρ.

ρ C tri
0 (ρ) C tri

4 (ρ) Chc
0 (ρ)

1 1.901 880 711 301 990 0.420 058 303 835 062 0.650 313 451 883 665
2 4.103 024 258 331 998 −0.326 217 003 543 879 1.017 170 709 722 000
3 4.744 524 165 326 869 −0.967 617 404 753 895 1.124 087 360 887 811
4 4.570 856 116 406 857 −1.317 204 084 284 658 1.095 142 686 067 810
5 4.160 445 642 382 107 −1.334 908 443 794 273 1.026 740 940 397 018
6 3.780 853 192 640 795 −1.179 012 991 639 663 0.963 475 532 106 799
7 3.503 255 527 522 170 −0.981 777 257 847 270 0.917 209 254 587 028
8 3.320 932 517 142 029 −0.807 318 620 952 495 0.886 822 086 190 338
9 3.208 115 423 758 777 −0.674 464 154 921 458 0.868 019 237 293 130

10 3.140 842 603 353 847 −0.581 325 872 529 628 0.856 807 100 558 975
11 3.101 715 130 809 265 −0.519 370 850 894 424 0.850 285 855 134 878
12 3.079 361 301 589 703 −0.479 634 197 647 875 0.846 560 216 931 617
13 3.066 761 868 024 451 −0.454 826 737 355 134 0.844 460 311 337 408
14 3.059 735 410 831 789 −0.439 660 729 459 804 0.843 289 235 138 631
15 3.055 850 477 805 811 −0.430 543 990 999 289 0.842 641 746 300 969
16 3.053 717 781 288 642 −0.425 139 425 966 243 0.842 286 296 881 440
17 3.052 554 049 450 865 −0.421 972 891 323 654 0.842 092 341 575 144
18 3.051 922 325 002 618 −0.420 136 179 461 406 0.841 987 054 167 103
19 3.051 580 935 973 584 −0.419 080 069 533 795 0.841 930 155 995 597
20 3.051 397 172 745 595 −0.418 477 433 243 636 0.841 899 528 790 933
∞ 3.051 186 000 941 275 −0.417 701 251 051 913 0.841 864 333 490 213

Remarks.

1. The fact that the coefficients C1 and C3 are proportional, respectively, to E1 and E5 for the
triangular (5.28) and hexagonal (5.29) lattices is not accidental. In fact, from (5.1)/(5.22)
we conclude that all the odd coefficients in the specific-heat expansion are proportional to
the corresponding coefficients of the internal-energy expansion. In fact, the proportional
constant is given by (see (5.1)/(4.1))

E2m+1

C2m+1
= dµ

dβ

∣∣∣∣
β=βc

(
d2µ

dβ2

∣∣∣∣
β=βc

)−1

. (5.30)

Indeed, for m = 1, 3 this ratio is indeterminate as both coefficients vanish.
2. The limiting values of the coefficients Cm(ρ) as ρ → ∞ are easily found to be

(cf (B.12))

lim
ρ→∞ Ctri

0 (ρ) = 12
√

3

π

[
γE + log

4
√

3

π
− π

2
√

3

]
(5.31a)

lim
ρ→∞ Ctri

1 (ρ) = lim
ρ→∞ Ctri

5 (ρ) = 0 (5.31b)

lim
ρ→∞ Ctri

4 (ρ) = − 7π3

300
√

3
(5.31c)

lim
ρ→∞ Chc

0 (ρ) = 2
√

3

π

[
γE + log

4
√

3

π
− π

3
√

3

]
(5.32a)
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lim
ρ→∞ Chc

1 (ρ) = lim
ρ→∞ Chc

5 (ρ) = 0 (5.32b)

lim
ρ→∞ Chc

4 (ρ) = − 7π3

1800
√

3
. (5.32c)

3. The behaviour of the coefficients Cm(ρ) under the transformation ρ → 1/ρ is that
expected

C0(ρ) = C00 log ρ + C0(1/ρ) (5.33a)

Cm(ρ) = Cm(1/ρ)

ρm
for m � 1. (5.33b)

4. From table 4 it is clear that Ctri
4 should vanish at a value between 1 and 2. Actually, due to

(5.29e), Chc
4 should also vanish at the same value of ρ. We have found numerically that

C4 vanishes at
ρmin ≈ 1.468 889 7779. (5.34)

Indeed, due to the transformation properties of C4(ρ) under the transformation ρ → 1/ρ,
C4 also vanishes at ρ−1

min ≈ 0.680 786 2748. This is similar to what happens in the square
lattice [24].

6. Higher derivatives of the free energy

6.1. Finite-size-scaling corrections to f (3)
c

In this section we will consider the third derivative of the free energy (2.17) at criticality. Even
though this observable is not relevant in practice, its computation is interesting as it provides
new insights into the finite-size-scaling function Ŵ defined in section 7. The observable f (3)

c

(2.17) can be written as follows:

f (3)
c = 8 cosh 2βc

sinh3 βc

+
1

V

d3µ

dβ3

∣∣∣∣
β=βc

Z′
00(0)∑
Zα,β(0)

+
1

V

(
dµ

dβ

)3

β=βc

×
[

Z′′′
α,β(0)∑
Zα,β(0)

− 3

∑
Z′′

α,β(0)∑
Zα,β(0)

Z′
00(0)∑
Zα,β(0)

+ 2

(
Z′

00(0)∑
Zα,β(0)

)3
]

+
3

V

d2µ

dβ2

∣∣∣∣
β=βc

dµ

dβ

∣∣∣∣
β=βc

[∑
Z′′

α,β(0)∑
Zα,β(0)

−
(

Z′
00(0)∑
Zα,β(0)

)2
]

. (6.1)

The only unknown object is the derivative Z′′′
0,0(0), which can be written in the following way

Z′′′
0,0(0)

Z′
0,0(0)

= M2 +
12MN

π
√

3

[
S(1)

0 + 2S(2)

0,0

]
(6.2)

where the sums S(j) were defined in (5.4). By following step by step the procedure developed
in section 5 and leading to (5.20), we can compute the finite-size expansion of the ratio (6.2)

1

MN

Z′′′
0,0(0)

Z′
0,0(0)

= 12

π
√

3
log N + Ã(ρ) +

∞∑
m=2

Ã2m

N2m
. (6.3)

By plugging in (6.1) the above result (6.3) and the results already obtained in sections 4
and 5, we obtain

f (3)
c (N, ρ) = A1(ρ)N + A00 log N + A0(ρ) +

∞∑
m=1

Am(ρ)

Nm
. (6.4)

In this expansion, the coefficient A2 is identically zero.
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The most important result contained in (6.4) is that the coefficient associated with the
expected leading term ∼L log L vanishes. This is a highly non-trivial fact and we will discuss
its physical meaning in section 7. We have obtained the first four non-vanishing coefficients
for the triangular lattice

Atri
1 (ρ) = 2ρEtri

1 (ρ)

[
ρEtri

1 (ρ)2 +
36

√
3

π

(∑ |θj | Re log θj∑ |θj | − log 2|η|
)]

(6.5a)

Atri
00 = − 216

π
√

3
(6.5b)

Atri
0 (ρ) = 48 − 54d0(ρ) + 6ρEtri

1 (ρ)2 (6.5c)

Atri
1 (ρ) = 16Etri

1 (ρ) (6.5d)

where the function d0(ρ) is defined in (5.23a). The numerical values of Atri
1 and Atri

0 can
be found in table 5, while the numerical values of Atri

1 can be computed from table 2. The
coefficients for the hexagonal lattice are

Ahc
1 (ρ) = 2ρEhc

1 (ρ)

[
4ρEhc

1 (ρ)2 +
36

π
√

3

(∑ |θj | Re log θj∑ |θj | − log 2|η|
)]

(6.6a)

Ahc
00 = −12

π
(6.6b)

Ahc
0 (ρ) = 16

3
√

3
− 3

√
3d0(ρ) + 4

√
3ρEhc

1 (ρ)2 (6.6c)

Ahc
1 (ρ) = 4Ehc

1 (ρ) (6.6d)

and their numerical values can be found in table 6.

Remarks.

1. The coefficients (6.5)/(6.6) have the right behaviour under the transformation ρ → 1/ρ.
In particular, they satisfy

A1(ρ) = ρA1(1/ρ) (6.7a)

A0(ρ) = A00 log ρ + A0(1/ρ) (6.7b)

A1(ρ) = A1(1/ρ)

ρ
. (6.7c)

2. In the limit ρ → ∞, both A1(ρ) and A1(ρ) go to zero as in this limit E1(ρ) → 0
exponentially fast. The limit of the coefficients A0(ρ) can be computed from (6.5c)/(6.6c)
and (5.24a)

lim
ρ→∞ Atri

0 (ρ) = 48 − 72
√

3

π

(
γE + log

4
√

3

π

)
(6.8a)

lim
ρ→∞ Ahc

0 (ρ) = 16

3
√

3
− 12

π

(
γE + log

4
√

3

π

)
. (6.8b)

3. From table 5 we see that Atri
1 (ρ) vanishes at a value ρmin between 3 and 4.



Exact finite-size-scaling corrections to the critical 2D Ising model on a torus: II 1855

Table 5. Values of the coefficients Atri
1 (ρ) and Atri

0 (ρ) for several values of the torus aspect
ratio ρ.

ρ Atri
1 (ρ) Atri

0 (ρ)

1 −16.556 352 382 598 901 0.588 715 732 188 061
2 −16.439 945 008 735 128 −12.618 145 549 991 986
3 6.161 165 303 236 093 −16.467 144 991 961 212
4 2.808 024 778 142 930 −15.425 136 698 441 144
5 6.829 759 193 109 778 −12.962 673 854 292 640
6 7.259 238 447 062 151 −10.685 119 155 844 771
7 6.078 697 042 860 241 −9.019 533 165 133 020
8 4.522 637 873 985 072 −7.925 595 102 852 174
9 3.134 987 142 065 343 −7.248 692 542 552 664

10 2.072 903 487 004 694 −6.845 055 620 123 084
11 1.324 966 640 033 683 −6.610 290 784 855 592
12 0.825 436 595 929 018 −6.476 167 809 538 218
13 0.503 936 252 639 239 −6.400 571 208 146 704
14 0.302 641 624 812 243 −6.358 412 464 990 734
15 0.179 285 740 783 859 −6.335 102 866 834 869
16 0.104 987 265 970 099 −6.322 306 687 731 851
17 0.060 870 848 500 045 −6.315 324 296 705 190
18 0.034 988 709 413 814 −6.311 533 950 015 708
19 0.019 959 520 236 906 −6.309 485 615 841 503
20 0.011 309 756 764 775 −6.308 383 036 473 573
∞ 0 −6.307 116 005 647 652

Table 6. Values of the coefficients Ahc
1 (ρ) and Ahc

0 (ρ) for several values of the torus aspect
ratio ρ.

ρ Ahc
1 (ρ) Ahc

0 (ρ)

1 2.204 248 900 857 568 5.090 947 597 599 750
2 1.260 776 176 148 286 2.011 554 369 485 771
3 0.657 422 819 248 581 −0.855 894 359 177 661
4 1.682 404 023 579 180 −2.151 736 456 053 733
5 2.442 900 124 268 499 −2.489 361 833 956 631
6 2.452 406 095 152 028 −2.473 169 556 688 759
7 2.032 154 004 962 206 −2.378 716 655 165 567
8 1.508 563 855 204 567 −2.293 728 702 105 723
9 1.045 164 213 119 409 −2.234 638 841 885 926

10 0.690 994 951 708 971 −2.197 561 506 291 189
11 0.441 659 818 805 435 −2.175 477 057 251 966
12 0.275 146 193 270 710 −2.162 714 473 030 565
13 0.167 978 851 785 044 −2.155 480 460 188 504
14 0.100 880 556 816 132 −2.151 434 956 603 961
15 0.059 761 915 864 342 −2.149 195 097 142 150
16 0.034 995 755 659 000 −2.147 964 640 036 792
17 0.020 290 282 882 592 −2.147 292 993 714 472
18 0.011 662 903 145 113 −2.146 928 331 463 238
19 0.006 653 173 413 341 −2.146 731 247 829 992
20 0.003 769 918 921 741 −2.146 625 156 802 025
∞ 0 −2.146 503 238 450 814
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Actually, Atri
1 is zero at

ρtri
min,1 ≈ 3.624 926 4261. (6.9)

We also find that Atri
0 (ρ) vanishes at

ρtri
min,2 ≈ 1.030 077 3853. (6.10)

In the hexagonal lattice, Ahc
1 (ρ) only vanishes in the limit ρ → ∞, while Ahc

0 is zero at

ρhc
min,2 ≈ 2.636 769 1963. (6.11)

6.2. Logarithmic finite-size corrections to f (4)
c

The full finite-size-scaling corrections to the fourth derivative of the free energy at criticality
f (4)

c are rather cumbersome to compute. However, we can extract with much less effort the
terms including logarithms. This is what we really need in the renormalization-group analysis
of section 7.

The first step is the computation of the full expression for f (4)
c in terms of the derivatives

of the basic objects Zα,β . We should keep only those terms in which Z′′
α,β(0), Z′′′

00(0) or Z
(4)
α,β (0)

enter. There are three possible contributions

f
(4)
c,log,1 = 1

V

∑
Z′′

α,β(0)∑
Zα,β(0)

[4µ′µ′′′ + 3(µ′)2] (6.12a)

f
(4)

c,log,2 = 6

V
(µ′)2µ′′ Z′

00(0)∑
Zα,β(0)

[
Z′′′

00(0)

Z′
00(0)

− 3

∑
Z′′

α,β(0)∑
Zα,β(0)

]
(6.12b)

f
(4)
c,log,3 = 1

V
(µ′)4

[∑
Z

(4)
α,β(0)∑

Zα,β(0)
− 3

(∑
Z′′

α,β(0)∑
Zα,β(0)

)2

− 4
Z′

00(0)∑
Zα,β(0)

(
Z′′′

00(0)

Z′
00(0)

− 3

∑
Z′′

α,β(0)∑
Zα,β(0)

)]
(6.12c)

where the derivatives of µ with respect to β have been represented, for short, by µ′, µ′′,
etc. The first contribution (6.12a) is clearly non-zero and of order log N . The second
contribution (6.12b) does not actually contain any logarithm, as the logarithmic contributions
of Z′′′

00(0)/Z′
00(0) and −3

∑
Zα,β(0)′′/∑Zα,β(0) cancel out exactly (see, e.g., (5.22)/(6.3)).

The same argument applies to the second line of (6.12c).
In order to compute the contribution of the first two terms in (6.12c), we have to consider

the fourth derivative of Zα,β(µ) at µ = 0 when (α, β) �= (0, 0). After some algebra, we find
that the logarithmic contributions to that derivative are

Z
(4)
α,β,log(0) = 12MN

π
√

3
Z′′

α,β(0)
(
S(1)

α + 2S(2)
α,β

)
+ M2Z′′

α,β(0)δα,0 +
8M3N

π
√

3
Zα,β(0) log Nδα,0

(6.13)

where the sums S(j) are defined in (5.4). After some more algebra we find that the contribution
of (6.12c) does not contain any logarithms.

In conclusion, we find that the finite-size-scaling expansion for the observable f (4)
c

contains a single logarithmic term

f
(4)
c,log = B00 log N (6.14)
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where B00 can be read from (6.12a). Its numerical value is

B00 =
{

2736/(π
√

3) triangular
120/(π

√
3) hexagonal.

(6.15)

The leading term in the large-N expansion of f (4)
c is expected to be ∼N2, and we also expect

a term of order ∼N.

7. Irrelevant operators in the two-dimensional Ising model

Let us first collect the main results of the previous sections

fc(N,ρ) = fbulk +
∞∑

m=1

f2m(ρ)

N2m
(7.1a)

Ec(N,ρ) = E0 +
∞∑

m=0

E2m+1(ρ)

N2m+1
(7.1b)

CH,c(N,ρ) = C00 log N + C0(ρ) +
∞∑

m=1

Cm(ρ)

Nm
(7.1c)

f (3)
c (N,ρ) = A1(ρ)N + A00 log N + A0(ρ) +

∞∑
m=1

Am(ρ)

Nm
(7.1d)

f
(4)
c,log(N,ρ) = B00 log N. (7.1e)

It is also important to mention that the coefficients f4, f8, E3, E7, C2, C3 and A2 vanish. In this
section we will use these results to study the irrelevant operators in the two-dimensional Ising
model and the finite-size-scaling function W̃ defined below. The results will be applicable
to both the triangular and hexagonal lattices as the analytic structure of the corresponding
asymptotic expansions is the same. To our knowledge, there are no predictions based on
conformal field theory for the hexagonal-lattice Ising model. In this section we will follow
basically the notation of [20].

Let us start with the basic finite-size-scaling ansatz for a system defined on a torus of
linear size L (the aspect ratio is also fixed and plays no role in this discussion), zero magnetic
field and reduced temperature τ [20, 44]

f (τ ; L) = fb(τ ) +
1

L2
W
({

µj (τ )Lyj
})

+
log L

L2
W̃
({

µj(τ )Lyj
})

(7.2)

where fb(τ ) is a regular function of τ and the scaling functions W and W̃ depend on the non-
linear scaling fields µj (τ ) belonging to the identity and energy conformal families. Among
them the only relevant field is the one associated with the temperature µt(τ ) (see table 7). In
this ansatz we have explicitly used the assumptions (a)–(c) introduced in section 1.

The reduced temperature τ measures the distance to the critical point6 and it is defined
such that τ = 0 at β = βc and τ > 0 (respectively τ < 0) for β < βc (respectively β > βc).
In the Ising model on the triangular and hexagonal lattices this parameter takes the form

τ =




1 + v2 − 4v

(1 − v)
√

2v
triangular

1 − 3v2

v
√

2(1 − v2)
hexagonal

(7.3)

6 This parameter should not be confused with the torus modular parameter. In this section τ will mean the reduced
temperature, while in the rest of the paper it will denote the usual modular parameter.
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Table 7. Operators in the two-dimensional Ising model according to [20]. For each conformal
family, we have listed the primary and quasiprimary fields belonging to it. For each scaling field µj ,
we show the notation used in [20], its spin s and its renormalization-group exponent y. We have
included the most relevant fields (i.e., y � −10) with spin s = 6 N. We have omitted the conformal
family [σ ] as it is irrelevant in this discussion. Only the primary fields I and ε are relevant.

Family j µj s y

[I ] 0 I 0 2
1 T T̄ 0 −2
2 T 3 + T̄ 3 6 −4
3 QI

4Q̄I
4 0 −6

4 Q̄I
2QI

8 + QI
2Q̄I

8 6 −8
5 QI

12 + Q̄I
12 12 −10

[ε] t ε 0 1
6 Qε

6 + Q̄ε
6 6 −5

7 Qε
4Q̄ε

4 0 −7

where as usual v = tanh β. Under the transformations that map the high-temperature phase
onto the low-temperature phase and vice versa

v → v′ =




(√
1 − v + v2 − √

v

1 − v

)2

triangular

√
1 − v2

1 + 3v2
hexagonal

(7.4)

the reduced temperature simply maps as τ → −τ . Equations (7.3)/(7.4) in the triangular-
lattice case were introduced in [20].

The non-linear scaling fields µj (τ ) can be written as a power series in τ

µj (τ ) = µj(0) + τµ1,j + 1
2τ 2µ2,j + · · · (7.5)

and we usually take the normalization µj (0) = 1 for the identity-family fields, and µ1,j = 1
for the energy-family fields. (These latter scaling fields are odd under the transformation
τ → −τ , thus they satisfy µj (0) = 0.)

As explained in [20], both scaling functions satisfy

W
({

µj (−τ )(−L)yj
}) = W

({
µj (τ )Lyj

})
(7.6)

(and analogously for W̃ ). Thus, even (respectively odd) derivatives of W and W̃ with respect
to τ will contain only even (respectively odd) powers of L. This fact explains the structure
found for the internal-energy and specific-heat expansions:

−Ec(L) = ∂τ

∂β

∣∣∣∣
β=βc

∂f

∂τ

∣∣∣∣
τ=0

(7.7a)

CH,c(L) = ∂2τ

∂β2

∣∣∣∣
β=βc

∂f

∂τ

∣∣∣∣
τ=0

+
∂τ

∂β

∣∣∣∣
β=βc

∂f 2

∂τ 2

∣∣∣∣
τ=0

. (7.7b)

In particular, (7.7) shows why the odd powers of the specific-heat expansion are related to
those of the internal energy. We will also make the following assumption, which is motivated
by the absence of terms L−m log L for any m > 0 in the expansions (7.1)

(d) The scaling function W̃ only depends on the scaling field associated with the
temperature

W̃
({

µj (τ )Lyj
}) = Ŵ (µt (τ )L). (7.8)
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As we know that there are no logarithmic contributions to the free and internal energies
(7.1a)/(7.1b), the scaling function Ŵ should satisfy

Ŵ (0) = ∂Ŵ(x)

∂x

∣∣∣∣∣
x=0

= 0. (7.9)

Conformal field theory [20] provides a list of irrelevant operators that may appear in the
two-dimensional Ising model (see table 7). By comparing the finite-size-scaling ansätze for
the free energy, internal energy and specific heat obtained from (7.2) to the corresponding
exact results (7.1) we may get new insights about the operator content of the model.

Let us start with the free energy. At the critical point τ = 0 this can be written as

fc(L) = fb(0) +
1

L2
W({xj }) (7.10)

where W depends only on the identity-family fields through the variables xj = µj (0)Lyj , as
the energy-family scaling fields vanish at criticality. This expression can be Taylor expanded
for large L, so we obtain a power series in L−1. The exact result (7.1a) tells us that only
corrections of order L2m can occur, except for the terms of order L−4 and L−8. From table 7,
we see that the scaling fields T T̄ and µ3 precisely give corrections of order L−4 and L−8 to the
expansion of (7.10). Hence, we need to impose the conditions

µT T̄ (0) = µ3(0) = 0. (7.11)

The derivative of the free energy with respect to τ can be written as [20]

∂f

∂τ

∣∣∣∣
τ=0

= ∂fb

∂τ

∣∣∣∣
τ=0

+
1

L2

∑
j∈[ε]

Lyj µ1,j Wj ({xk}) (7.12a)

= ∂fb

∂τ

∣∣∣∣
τ=0

+
1

L
µ1,tWt ({xk}) +

1

L7
µ1,6W6({xk}) +

1

L9
µ1,7W7({xk}) + · · · .

(7.12b)

Each function Wj ({xk}) can be expanded as we did for the free energy, giving a power series
in L−2m with no contribution to orders L−4 and L−8. From the exact solution (7.1b), we see
that only corrections of the type L−2m−1 can appear except for the powers L−3 and L−7. This
implies that the scaling field µ6 cannot play any role, thus

µ1,6 = 0. (7.13)

The second derivative of the free energy at criticality is given by [20]:

∂2f

∂τ 2

∣∣∣∣
τ=0

= ∂2fb

∂τ 2

∣∣∣∣
τ=0

+
1

L2

∑
i,j∈[ε]

Lyi +yj Wij ({xk})

+
1

L2

∑
j∈[I ]

µ2,j L
yj Wj ({xk}) + 2 log L

∂2Ŵ (x)

∂x2

∣∣∣∣∣
x=0

(7.14)

where we have used the standard normalization. The second term in the rhs of (7.14) can be
written as

1

L2

∑
i,j∈[ε]

Lyi +yj Wij ({xk}) = Wtt ({xk}) +
1

L6
Wt7({xk}) + · · · . (7.15)

These two terms alone give all even powers of L−1 except L−2 in agreement with the exact
expansion (7.1c). The third term in the rhs of (7.14) is equal to
1

L2

∑
j∈[I ]

µ2,j L
yj Wj ({xk}) = 1

L4
µ2,1W1({xk}) +

1

L6
µ2,2W2({xk}) + · · · . (7.16)
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Again, this is a power series containing all even powers of L−1 except L−2 in agreement with
(7.1c).

The coefficient of the leading term should be equal to C00

C00 =
(

dτ

dβ

∣∣∣∣
β=βc

)2

Ŵ ′′(0). (7.17)

Hence we can determine the numerical value of Ŵ ′′(0) by using (5.28a)/(5.29a) and the
definition of τ (7.3). The result is

Ŵ ′′(0) =
{

1/(π
√

3) triangular
1/(2π

√
3) hexagonal

(7.18)

where we have considered the standard normalization for µt(τ ). The value (7.18) for the
triangular lattice agrees with the result obtained in ([20], equation (3.34)).

Remarks.

1. The irrelevant scaling fields belonging to the identity family that may play a role have
non-zero spin (namely, s = 6,12). The spin-zero fields belonging to this family should
vanish at criticality (e.g., µj (0) = 0). This result agrees with conjecture 1.1.

2. The vanishing of the field µ1 = T T̄ at criticality supports conjecture (d0) of [20].
However, our results do not imply their stronger conjecture (d1): the scaling field T T̄

decouples (i.e., µT T̄ (τ ) = 0 for all τ )7.
3. In the internal-energy analysis, we concluded that the irrelevant field µ6 should vanish

at criticality (7.13). This operator has spin six, therefore this result is not implied by
conjecture 1.1. In other words, there are also cancellations in the non-scalar sector. On
the other hand, we find no constraint on the spin-zero irrelevant field µ7. However, if
conjecture 1.1 is true, then we should have µ1,7 = 0.

4. In order to obtain the exact solutions (7.1) we need to include at least two irrelevant
operators. This result agrees with the findings of [17, 18] for the square-lattice model. It
is worth noticing that we can formally obtain the exact solutions (7.1) by including the
spin-6 irrelevant scaling field µ2 = T 3 + T̄ 3 with y = −4 and the spin-12 field µ5 with
y = −10,

fc(L) = fb(0) +
1

L2
W
(
µ2(0)L−4, µ5(0)L−10) (7.19a)

∂f

∂τ

∣∣∣∣
τ=0

= ∂fb

∂τ

∣∣∣∣
τ=0

+
1

L
Wt

(
µ2(0)L−4, µ5(0)L−10) (7.19b)

∂2f

∂τ 2

∣∣∣∣
τ=0

= 2Ŵ ′′(0) log L +
∂2fb

∂τ 2

∣∣∣∣
τ=0

+ Wtt

(
µ2(0)L−4, µ5(0)L−10)

+
1

L6
µ2,2W2

(
µ2(0)L−4, µ5(0)L−10

)
+

1

L12
µ2,5W5

(
µ2(0)L−4, µ5(0)L−10). (7.19c)

7 It is worth mentioning that the authors of [20] showed by considering the large-distance behaviour of the triangular-
lattice Ising model two-point function that µT T̄ (τ ) = o(τ 4). This result strongly supports their conjecture (d1).
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Let us now consider the observable f (3)
c (2.17). We are interested here only in the terms

containing logarithms, which are directly related to the derivatives of the scaling function
Ŵ(x). The contribution of this scaling function to this observable can be written as

f
(3)
c,log = L log L Ŵ ′′′(0)

(
∂τ

∂β

)3

β=βc

+ 3 log L Ŵ ′′(0)
∂τ

∂β

∣∣∣∣
β=βc

∂2τ

∂β2

∣∣∣∣
β=βc

. (7.20)

The exact result (6.4) shows that

∂3Ŵ (x)

∂x3

∣∣∣∣∣
x=0

= 0. (7.21)

This result is consistent with the conjecture put forth by the authors of [20] who claimed that
the scaling function Ŵ is quadratic in its argument (i.e., Ŵ(x) = Ax2).

On the other hand, the coefficient of the logarithmic term in f (3)
c (i.e., A00) is proportional

to Ŵ ′′(0). This observation provides another way to compute the quantity Ŵ ′′(0) and a direct
means to test the predictions (7.18). By using the exact results (6.5b)/(6.6b)/(7.3), we arrive
at the same values as in (7.18), supporting the correctness of our results.

Finally, we will discuss the observable f (4)
c . The contribution of the scaling function Ŵ

to this observable is given by

f
(4)
c,log = L2 log L Ŵ (4)(0)

(
∂τ

∂β

)
+ 3 log L Ŵ ′′(0)

[
4

∂τ

∂β

∂3τ

∂β3
+ 3

(
∂2τ

∂2β

)2

+ 4

(
∂2τ

∂2β

)4

µ3,t

]

(7.22)

where all the derivatives of τ with respect to β should be evaluated at β = βc. By comparing
the above formula to (7.1e)/(6.15), we conclude that

∂4Ŵ (x)

∂x4

∣∣∣∣∣
x=0

= 0. (7.23)

This result is compatible with Ŵ (x) being a quadratic function of x. On the other hand, as
we know the numerical values of the derivatives of τ w.r.t. β for the triangular and hexagonal
lattices, we can use equations (6.15)/(7.22) to deduce the value of µ3,t . The result is the same
for both lattices µ3,t = −1/4, so the non-linear scaling field µt depends on τ in the following
way:

µt(τ ) = τ − 1
24τ 3 + O(τ 5). (7.24)

This relation coincides with the function a(τ ) obtained in [20] for the triangular lattice8:

a(τ) = τ − 1
24τ 3 + 47

10 368τ 5 − 161
248 832τ 7 + O(τ 9). (7.25)

The equality between a(τ) and µt(τ ) is important because it provides support to conjecture
1.1: if this conjecture is correct, then both functions should coincide [20].

We can summarize the results obtained on the scaling function Ŵ in the following
conjecture (which is a natural extension of the conjecture Ŵ (x) = x2/(2π) for the square-
lattice model [20]):
8 It is not hard to realize that the function a(τ ) (7.25) is the same for the hexagonal lattice. The key observation is
that the free energy for this lattice in the thermodynamic limit (3.29b) can be written as

f hc
bulk = 1

4

∫ π

0

∫ π

0

dx dy

4π2
log[3 + τ 2 − ω(x, y)] + constant

where τ is given by (7.3). This equation is equivalent to the definition used in [20] to define a(τ ) for the triangular
lattice.
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Conjecture 7.1. In the Ising model on the triangular and hexagonal lattices with toroidal
boundary conditions, the scaling function Ŵ is a function solely of the argument x = µt(τ )L

and this function is equal to

Ŵ (x) =
{

x2/(2π
√

3) triangular

x2/(4π
√

3) hexagonal.
(7.26)

The coefficient of Ŵ should coincide with the constant A obtained in the infinite-volume
limit analysis of the triangular-lattice model ([20], equation (2.34)). The agreement between
those coefficients adds support to this conjecture.

8. Further remarks and conclusions

We have obtained the asymptotic expansions for the free energy, internal energy, specific heat
and f (3) of a critical Ising model on the triangular and hexagonal lattices wrapped on a torus
of width N and aspect ratio ρ. These expansions are given in (7.1). In particular, we have
found the exact coefficients fbulk, f2, f4 = f8 = 0, f6, E0, E1, E3 = E7 = 0, E5, C00, C0,
C1, C2 = C3 = 0, C4, C5, A1, A00, A0, A1, A2 = 0 and B00 for both lattices.

The first important observation is that the analytic structure of the finite-size corrections
of the observables considered in this paper is the same for the triangular- and the hexagonal-
lattice models. The reason for this coincidence is that both lattices have the same underlying
Bravais lattice. This agrees with the physical content of conjecture 1.1: as they have the same
rotational symmetry group, they should have the same irrelevant operators, hence leading to
the same finite-size corrections.

As can be seen in (7.1), all the corrections are integer powers of N−1. The only exceptions
are the logarithmic terms in the specific heat (7.1c), f (3)

c (7.1d) and f (4)
c (7.1e). In the first

case, this term is the leading one, while in the other ones it is subleading. In the free-energy
expansion (7.1a) only even powers of N−1 can occur, while in the internal-energy expansion
(7.1b) only odd powers of N−1 appear. In the specific-heat expansion even and odd powers of
N−1 occur. Furthermore, the odd coefficients in this latter expansion are proportional to the
corresponding odd coefficients in the internal-energy expansion. The constant depends on how
the mass µ (2.12) depends on the temperature (5.30). In the expansion of the observable f (3),
we find corrections with all powers of N−1 except for the term N−2. Indeed, the coefficients fm,
Em, Cm and Am do depend on the lattice structure of the model, hence they are not universal.

The fact that E2m+1/C2m+1 is a ρ-independent number for the square lattice (=−1/
√

2)

[24, 23], suggested the idea that this ratio might be universal (e.g., it does not depend on the
lattice structure)9. However, our results show that this is not the case:

E2m+1(ρ)

C2m+1(ρ)
=
{−1/2 triangular
−√

3/2 hexagonal.
(8.1)

Thus, the proportional constant does depend on the lattice structure, hence it is not universal.
We can write (8.1) and the corresponding square-lattice relation (1.2) in an unified way by
realizing that the constant is just −1/E0.

9 Izmailian and Hu [41] (see also [43]) computed the finite-size expansion of the free energy f (N) = fbulk +∑∞
k=1 fk/N2k and the inverse correlation length ξ−1(N) = ∑∞

k=1 bk/N2k−1 for a critical Ising model on several
N × ∞ lattices (i.e., square, hexagonal and triangular) with periodic boundary conditions. They found lattice-
dependent coefficients fk and bk, but universal ratios bk/fk = (22k − 1)/(22k−1 − 1).
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It is important to note10 that one key ingredient in this discussion is the fact that there is
an exact transformation (7.4) mapping the high-temperature phase onto the low-temperature
phase, so we can define a parameter τ (7.3) transforming as τ → −τ . It is not clear whether
this transformation exists or not for an Ising model defined on a general lattice. However,
if that transformation does exist, then we can define τ so equation (7.6) holds, leading to
(7.7)/(8.1). We can summarize all these observations in the following conjecture:

Conjecture 8.1. Let us consider a critical Ising system on a regular two-dimensional lattice
with toroidal boundary conditions. Let us further assume that there is an exact mapping
v → v′ from the high-temperature phase onto the low-temperature phase such that τ → −τ .
Then, the internal energy and specific heat can be expanded in power series of N−1 as in
(7.1b)/(7.1c) and the coefficients Em(ρ) and Cm(ρ) satisfy

Em(ρ)

Cm(ρ)
=
{−1/E0 for m odd

0 for m even
(8.2)

where E0 is the bulk internal energy (see (7.1b)). Indeed, we understand that this ratio is not
defined whenever Em = 0.

If this conjecture is true, then we could define the expansions

Ec(N, ρ) = E0

[
1 +

∞∑
m=0

Ẽ2m+1(ρ)

N2m+1

]
(8.3a)

CH,c(N, ρ) = E2
0

[
C̃00 log N + C̃0(ρ) +

∞∑
m=1

C̃m(ρ)

Nm

]
(8.3b)

and then the new ratios would be universal

Ẽm(ρ)

C̃m(ρ)
=
{−1 for m odd

0 for m even.
(8.4)

In section 1 we mentioned that the results contained in this paper could serve also to test
Monte Carlo simulations. Indeed, the expressions (3.4)/(4.2)/(5.3) provide a way to compute
the exact values of the internal energy and specific heat for any finite torus of size N × M.
For very large lattices one could also use the (easier to evaluate) asymptotic expansions
(7.1b)/(7.1c).

On the other hand, by taking the exact values of any observable for fixed aspect ratio
ρ and several values of the torus width N, we can check whether the asymptotic expansions
(7.1) are correct or not. In particular, by fitting the exact values to the corresponding ansatz,
we can verify whether the numerical coefficients coincide with the estimates coming from
the fits. We have performed such an analysis and have confirmed that the numerical values
of the coefficients fm, Em, Cm and Am for several values of ρ coincide with the estimates
coming from the fits. In addition, this procedure allows us to obtain crude estimates of the
next coefficients in each expansion. For instance, we obtain for ρ = 1 (which is the case most
frequently considered in the literature) the following values:

f tri
10 (1) ≈ 1.932 f hc

10 (1) ≈ 0.966 (8.5a)

Etri
9 (1) ≈ −7.821 Ehc

9 (1) ≈ −2.258 (8.5b)

Ctri
6 (1)≈ −0.722 Chc

6 (1) ≈ −0.120 (8.5c)

Atri
3 (1) ≈ 9.124 Ahc

3 (1) ≈ 0.878. (8.5d)

10 We thank Andrea Pelissetto for useful comments on this matter.
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Appendix A. The Euler–MacLaurin formula

The Euler–MacLaurin formula is one important tool we need to compute asymptotic series.
Here we will use the version of ([45], formula 23.1.32). Let F(x) be a function whose first 2n
derivatives are continuous in the interval (a, b). If we divide the interval into m equal parts (so
that h = (b − a)/m), then we have
m−1∑
k=0

F(a + kh + αh) = 1

h

∫ b

a

F (t) dt +
p∑

k=1

hk−1

k!
Bk(α)

[
F (k−1)(b) − F (k−1)(a)

]

− hp

p!

∫ 1

0
B̂p(α − t)

{
m−1∑
k=0

F (p)(a + kh + th)

}
dt (A.1)

where p � 2n, 0 � α � 1, B̂n(x) = Bn(x − �x�) and Bn(x) are the Bernoulli polynomials
defined in terms of the Bernoulli numbers Bk by

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k. (A.2)

Indeed, Bn(0) = Bn. The Bernoulli polynomials satisfy the identity ([45], equation 23.1.21):

Bn(1/2) =
(

1

2n−1
− 1

)
Bn. (A.3)

We are mainly interested in sums of the form

1

L

γL−1∑
n=0

F

(
2π

L
(n + α)

)
. (A.4)

The asymptotic expansion of the sum (A.4) in the limit L → ∞ with γ fixed can be obtained
from (A.1). If we assume that all the derivatives of F(t) are integrable over the interval
[0, 2πγ ] we can formally extend the sum in (A.1) to k = ∞ and drop the remainder term
(namely, the integral in (A.1)). In this case, we can write the Euler–MacLaurin formula as
follows:

1

L

γL−1∑
n=0

F

(
2π

L
(n + α)

)
= 1

2π

∫ 2πγ

0
F(t) dt

+
1

2π

∞∑
k=1

(
2π

L

)k
Bk(α)

k!

[
F (k−1)(2πγ ) − F (k−1)(0)

]
. (A.5)

In this paper, we need the above formula in the particular case L = 2N and γ = 1/2. Then
(A.5) reads

1

N

N−1∑
n=0

F
( π

N
(n + α)

)
= 1

π

∫ π

0
F(t) dt +

1

π

∞∑
k=1

( π

N

)k Bk(α)

k!

[
F (k−1)(π) − F (k−1)(0)

]
.

(A.6)
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In the computation of the specific heat we also need formula (A.1) in the particular case
α = 0 and h = 1. In this case, we can formally write (A.1) for a function F whose derivatives
are all integrable over [a, b] in the following form [42]

b−1∑
k=a

F (k) =
∫ b

a

F (t) dt − 1

2
[F(b) − F(a)] +

∞∑
k=1

B2k

(2k)!

[
F (2k−1)(b) − F (2k−1)(a)

]
(A.7)

where we have used the fact that [45]

B2k+1 =
{− 1

2 k = 0
0 k > 0.

(A.8)

As we did in [24], we can apply (A.7) to the function F(x) = x2m with a = 0 and b = 1. We
then obtain the identity

m∑
k=1

B2k

2k

(
2m

2k − 1

)
= 1

2
− 1

2m + 1
. (A.9)

If we apply (A.7) to the case F(x) = x2m−1 with the same endpoints as before, we obtain

m−1∑
k=1

B2k

2k

(
2m − 1
2k − 1

)
= 1

2

(
1 − 1

m

)
. (A.10)

Appendix B. Theta functions

In this appendix, we gather all the definitions and properties of the Jacobi’s θ -functions needed
in this paper. We first introduce the object θα,β(z, τ ) (α, β = 0, 1/2)11

θα,β(z, τ ) =
∑
n∈Z

q(n+1/2−α)2
exp

{
2π i

(
n +

1

2
− α

)(
z + β − 1

2

)}
(B.1)

where the nome q is defined in terms of the modular parameter τ as follows:

q = eπ iτ . (B.2)

Using the identity (proved in [46])
∞∏

n=0

[1 + q2n−1t][1 + q2n−1t−1][1 − q2n] =
∑
n∈Z

qn2
tn (B.3)

we can write (B.1) as

θα,β(z, τ ) = η(τ)qB2(α) e2π i(1/2−α)(z+β−1/2)

∞∏
n=0

[
1 − q2(n+1−α) e2π i(z+β)

] [
1 − q2(n+α) e−2π i(z+β)

]
(B.4)

where η(τ) is Dedekind η-function

η(τ) = eπ iτ/12
∞∏

n=1

[1 − e2π iτn] (B.5)

11 This object is almost identical to the one introduced in [25]. However, this latter one gives the wrong sign to
θ1(z, τ ) (cf (B.10)), although this is not important as we are only interested in the case z = 0 where θ1(0, τ ) = 0.
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and B2(α) is the Bernoulli polynomial (cf (A.2))

B2(α) = α2 − α + 1
6 . (B.6)

The relation of the functions θα,β with the usual θ -functions θi(z, τ ), i = 1, . . . , 4 [47],
is the following:

θ0,0(z, τ ) = θ1(z, τ ) = −i
∑
n∈Z

(−1)n e2π iz(n+1/2)+π iτ(n+1/2)2
(B.7)

θ0, 1
2
(z, τ ) = θ2(z, τ ) =

∑
n∈Z

e2π iz(n+1/2)+π iτ(n+1/2)2
(B.8)

θ 1
2 ,0(z, τ ) = θ4(z, τ ) =

∑
n∈Z

(−1)n e2π izn+π iτn2
(B.9)

θ 1
2 , 1

2
(z, τ ) = θ3(z, τ ) =

∑
n∈Z

e2π izn+π iτn2
. (B.10)

In this paper, we will only need these functions evaluated at z = 0 and τ = iτ0ρ where τ0

is given by (3.19). To simplify the notation we will use the shorthands

θα,β = θα,β(iτ0ρ) = θα,β(z = 0, τ = iτ0ρ) (B.11a)

θi = θi(iτ0ρ) = θi(z = 0, τ = iτ0ρ) (B.11b)
η = η(iτ0ρ) = η(τ = iτ0ρ). (B.11c)

We also need the limits of the θ -functions in the limit ρ → ∞. These limits are given by

lim
ρ→∞ θ3(iτ0ρ) = lim

ρ→∞ θ4(iτ0ρ) = 1 (B.12a)

lim
ρ→∞ θ2(iτ0ρ) = lim

ρ→∞ 2e−πτ0ρ/4 = 0. (B.12b)

From equation (B.4) we arrive at the following identity valid when (α, β) �= (0, 0):

log

∣∣∣∣θα,β(iτ0ρ)

η(iτ0ρ)

∣∣∣∣ + πρ Re(τ0)B2(α) =
∞∑

n=0

{
log
∣∣1 − e−2π [τ0ρ(n+1−α)−iβ]

∣∣
+ log

∣∣1 − e−2π [τ0ρ(n+α)+iβ]
∣∣}. (B.13)

Another useful relation involving log θα,β(0, τ ) is the following:
∞∑

n=δα,0

∞∑
p=1

e2πpi(τ (n+α)−β)

n + α
= −

[
log θα,β(τ ) −

( iπτ

4
+ log 2

)
δα,0

]
. (B.14)

We have proved this identity by considering each case α, β = 0, 1/2 (with (α, β) �= (0, 0))
separately and by a careful rearrangement of the corresponding series.

Dedekind’s η-function satisfies the following identity:

η(τ)3 = 1
2θ2(τ )θ3(τ )θ4(τ ). (B.15)

The analogue of (B.13) when (α, β) = (0, 0) is given in the particular case τ = iτ0ρ by
∞∑

n=1

log |1 − e−2πτ0ρn| = log |η| +
πρ

12
Re(τ0). (B.16)

We also need the behaviour of the θ functions under the Jacobi transformation

τ → τ ′ = −1/τ. (B.17)
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The result when z = 0 is given in [46]

θ3(0, τ ′) = (−iτ )1/2θ3(0, τ ) (B.18a)
θ2,4(0, τ ′) = (−iτ )1/2θ4,2(0, τ ). (B.18b)

In particular, if τ = iτ &
0 ρ where

τ &
0 =

√
3 + i

2
= 1

τ0
(B.19)

is the complex conjugate of τ 0 (3.19), the θ -functions transform under (B.17) as follows:

θ3(0, iτ &
0 /ρ) = (τ0ρ)1/2θ3(0, iτ0ρ) (B.20a)

θ2,4(0, iτ &
0 /ρ) = (τ0ρ)1/2θ4,2(0, iτ0ρ). (B.20b)

Finally, we should mention that the absolute value of the above θ -functions does not depend
on the sign of Im τ 0. Thus,

|θi(0, iτ0/ρ)| = |θi(0, iτ &
0 /ρ)|. (B.21)

Appendix C. Kronecker’s double series

In this appendix, we collect a few properties of the Kronecker’s double series [48]. These
series are defined as

Kα,β
p (τ ) = − p!

(−2π i)p

∑
m,n∈Z

(m,n) �=(0,0)

e−2π i(nα+mβ)

(n + τm)p
. (C.1)

The basic property we need is the following

B2p(α) − Re K
α,β

2p (τ ) = 2p Re
∞∑

m=1

∞∑
n=0

[
(n + α)2p−1 e2π im[τ(n+α)−β]

+ (n + 1 − α)2p−1 e2π im[τ(n+1−α)−β]] (C.2)

in the particular case τ = iτ0ρ with τ0 ∈ C (cf (3.19)) and ρ ∈ R. Equation (C.2) can easily be
proved using the same arguments as in ([25], appendix D) where they consider the particular
case τ = iρ, ρ ∈ R.

In this paper, we also need certain values of the K
α,β
p obtained in ([25], appendix E)

K
0, 1

2
4 (τ ) = 1

30

(
7
8θ8

2 − θ4
3 θ4

4

)
(C.3a)

K
1
2 ,0

4 (τ ) = 1
30

(
7
8θ8

4 − θ4
2 θ4

3

)
(C.3b)

K
1
2 , 1

2
4 (τ ) = 1

30

(
7
8θ8

3 + θ4
2 θ4

4

)
(C.3c)

K
0,0
6 (τ ) = 1

84

(
θ4

2 + θ4
3

) (
θ4

4 − θ4
2

) (
θ4

3 + θ4
4

)
(C.4a)

K
0, 1

2
6 (τ ) = 1

84

(
θ4

3 + θ4
4

) (
31
16θ8

2 + θ4
3 θ4

4

)
(C.4b)

K
1
2 ,0

6 (τ ) = − 1
84

(
θ4

2 + θ4
3

) (
31
16θ8

4 + θ4
2 θ4

3

)
(C.4c)

K
1
2 , 1

2
6 (τ ) = 1

84

(
θ4

2 − θ4
4

) (
31
16θ8

3 − θ4
2 θ4

4

)
. (C.4d)

The behaviour of the functions K
α,β

6 under the Jacobi transformation (B.17) can be
obtained using (B.20) and taking into account that τ 6

0 = −1
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K
0, 1

2
6 (0, iτ &

0 /ρ) = ρ6K
1
2 ,0

6 (0, iτ0ρ) (C.5a)

K
1
2 ,0

6 (0, iτ &
0 /ρ) = ρ6K

0, 1
2

6 (0, iτ0ρ) (C.5b)

K
1
2 , 1

2
6 (0, iτ &

0 /ρ) = ρ6K
1
2 , 1

2
6 (0, iτ0ρ) (C.5c)

K
0,0
6 (0, iτ &

0 /ρ) = ρ6K
0,0
6 (0, iτ0ρ). (C.5d)

Finally, we mention that the value of Re K
α,β

6 does not depend on the sign of Im τ0:

Re K
α,β

6 (0, iτ &
0 /ρ) = Re K

α,β

6 (0, iτ0/ρ). (C.6)
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